Senior College Notification : June, 2019

This is a summary of current activities at Senior College. Please visit our website http://www.seniorcollege.utoronto.ca to obtain fuller details, to register for events and keep abreast of our activities. You should be receiving email notices about each of our events as they occur with links for registration.

You can also send enquiries and information to Vennese Croasdaile at senior.college@utoronto.ca

1. The Senior College Senate will meet for its annual general meeting on

Tuesday, June 11 at 10 am in the Faculty Club.

This is open to all retired faculty and librarians. A la carte lunch will be available afterwards. More details at: https://seniorcollege.utoronto.ca/event/senior-college-agm-senate-meeting-tuesday-june-11-2019-1000am-lunch-is-at-1200pm-faculty-club/?instance_id=285

2. The next limited-enrolment colloquium will occur on Thursday, June 20 at 2 pm., at the Senior College Centre, 256 McCaul Street. Participants, having read some literature in advance, will meet to discuss the selected topic. The topic is: "How to change social norms and should we want to?"

Chair and organizer: Daphne Maurer and John Yeomans

Registration is required at https://seniorcollege.utoronto.ca/event/colloquium-jun-20-2019-2-4pm-2-2/

3. On Thursday, June 13, Fellows of Senior College will meet for an alfresco dinner at Miller Lash House at UTSC at 5:30. Those who are energetic can meet at the Guildwood GO station beforehand at 4 pm and walk to the site through the park.

More details and registration at: https://seniorcollege.utoronto.ca/event/miller-lash-june-13/?instance_id=283

4. The annual solstice party is coming up. Open to Fellows, External Fellows and their spouses.

Registration is required at https://seniorcollege.utoronto.ca/event/senior-college-2019-summer-solstice/

[Now that summer is almost here, it is time for the Beer Mug Theorem: if three circles with equal radii intersect in a common point, then the circle that passes through the three points where exactly two of them meet has the same radius. To get some insight into why this is true, make a sketch of the three circles and join the centre of each to the three points where it intersects another circle. You will get what looks like a skeleton of a cube in the plane (showing nine of its twelve sides and seven of its eight vertices). Complete the skeleton; the eighth vertex will be the location of the centre of the circle. You can experiment for yourself placing a sweating glass of beverage repeatedly on a counter.]